
ORIGINAL ARTICLE

A lipidomic and metabolomic serum signature from nonhuman
primates exposed to ionizing radiation

Evan L. Pannkuk1 • Evagelia C. Laiakis1 • Tytus D. Mak2 • Giuseppe Astarita1,3 •

Simon Authier4 • Karen Wong4 • Albert J. Fornace Jr.1,5,6

Received: 19 August 2015 / Accepted: 15 February 2016 / Published online: 15 March 2016

� Springer Science+Business Media New York 2016

Abstract

Introduction Due to dangers associated with potential

accidents from nuclear energy and terrorist threats, there is

a need for high-throughput biodosimetry to rapidly assess

individual doses of radiation exposure. Lipidomics and

metabolomics are becoming common tools for determining

global signatures after disease or other physical insult and

provide a ‘‘snapshot’’ of potential cellular damage.

Objectives The current study assesses changes in the

nonhuman primate (NHP) serum lipidome and metabolome

7 days following exposure to ionizing radiation (IR).

Methods Serum sample lipids and metabolites were

extracted using a biphasic liquid–liquid extraction and

analyzed by ultra performance liquid chromatography

quadrupole time-of-flight mass spectrometry. Global radi-

ation signatures were acquired in data-independent mode.

Results Radiation exposure caused significant perturba-

tions in lipid metabolism, affecting all major lipid species,

including free fatty acids, glycerolipids, glycerophospho-

lipids and esterified sterols. In particular, we observed a

significant increase in the levels of polyunsaturated fatty

acids (PUFA)-containing lipids in the serum of NHPs

exposed to 10 Gy radiation, suggesting a primary role

played by PUFAs in the physiological response to IR.

Metabolomics profiling indicated an increase in the levels

of amino acids, carnitine, and purine metabolites in the

serum of NHPs exposed to 10 Gy radiation, suggesting

perturbations to protein digestion/absorption, biological

oxidations, and fatty acid b-oxidation.

Conclusions This is the first report to determine changes

in the global NHP serum lipidome and metabolome fol-

lowing radiation exposure and provides information for

developing metabolomic biomarker panels in human-based

biodosimetry.

Keywords Lipidomics � Metabolomics � Ionizing

Radiation � Nonhuman Primate

1 Introduction

Due to potential widespread exposures to radiation fol-

lowing nuclear or radiological events, tools for high-

throughput biodosimetry are needed to quickly assess

individual absorbed dose. Lipidomics and metabolomics

(analysis of molecules \1 kDa) represent the downstream

portion of systems biology (the integration of all ‘‘omic’’

information from genes to proteins to metabolites) (Zhang

et al. 2012; Jones et al. 2014). Global biofluid metabolite

signatures provide ‘‘snapshots’’ of an organism’s health

status and may provide biomarkers for underlying diseases
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(Patti et al. 2012) and radiation exposure. While global

lipidomics and metabolomics offer exciting technologies

with far-reaching application, they are not without limita-

tions. Firstly, many metabolites and lipids are functionally

uncharacterized or completely unknown. Characterizing

unknown compound structure requires laborious methods

including chromatographic fractionation, mass spectrome-

try (MS), nuclear magnetic resonance spectroscopy, infra-

red spectroscopy, among others (Reichenbächer and Popp

2012). Secondly, if a metabolite structure is known, many

standards are unavailable or are prohibitively expensive to

synthesize. Finally, with the vast amount of information

collected from global metabolomics, robust statistical

methodologies for extracting biologically relevant infor-

mation are time consuming (Sugimoto et al. 2012; Mak

et al. 2015). Despite these limitations, lipidomics and

metabolomics have progressed rapidly in recent years

leading to detection of critical disease biomarkers (Manna

et al. 2010; Mapstone et al. 2014), contributed to drug

development/assays (Vihervaara et al. 2014), and provided

insights on natural products (Cox et al. 2014) and nutri-

tional science (Astarita and Langridge 2013).

Lipids represent a range of compounds with varied

structures and functions. Broad lipid classes encompass

eight categories with varied function: (1) glycerolipids, (2)

unesterified fatty acyls, (3) sterols, (4) polyketides, (5)

sphingolipids, (6) saccharolipids, (7) prenols, (8) and glyc-

erophospholipids (GPs) (Fahy et al. 2007;2009). While the

major function of lipids was classically considered the for-

mation of cellular bilayer membranes (GPs) and energy

storage [triacylglycerides (TGs)], our current understanding

indicates more intricate functions in cellular signaling and

inflammation. Sphingosines and ceramides (CERs) have

been identified as key signaling molecules involved in

apoptosis and growth arrest (Hannun and Obeid 2011).

Eicosanoid oxygenation by cyclooxygenase (COX),

lipoxygenase (LOX), and CYP-450 pathways (or non-en-

zymatic pathways) lead to inflammation and are important

tissue damage biomarkers (reviewed by Astarita et al. 2015).

Perturbations to broad lipid classes may indicate lipoxida-

tive stress intensity (Yin et al. 2011). Plasmalogen defi-

ciencies are markers of peroxisomal disorders and increased

oxidative stress, as the vinyl ether bond has lower dissoci-

ation energies compared to diacyl GPs (Braverman and

Moser 2012). Diacyl GPs may be hydrolyzed producing

higher LysoGP proportions (Subbanagounder et al. 2000;

Fruhwirth et al. 2007). Monitoring shifts in lipidomic and

metabolomic profiles may provide biomarkers for assessing

an individual’s physical damage from xenobiotic com-

pounds or ionizing radiation (IR).

Exposure to IR generates reactions with water to form

free hydrogen and hydroxyl radicals, thus increasing

oxidative stress. In addition, the response to IR involves a

pro-inflammatory component, which can further contribute

to oxidative stress (Mukherjee et al. 2014). Lipidomic and

metabolomic radiation signatures may offer clues into the

extent of physiological damage from different doses of IR

and be utilized for high throughput biodosimetry. As

unsaturated lipids are susceptible to oxidative damage due

to IR exposure, changes in concentration of specific lipid

species make them relevant for development of radiation

biomarkers. Conversely, a previous study on mice exposed

to IR suggested that there was a potential role of increased

polyunsaturated fatty acids (PUFA) to mediate inflamma-

tion (Laiakis et al. 2014a). The roles of PUFAs in

inflammation versus degradation in a highly oxidative state

remains to be elucidated.

Here, we use a nonhuman primate (NHP) model that

provides a means to lower spectral ‘‘noisiness’’ due to

genetic and pre-existing medical conditions present in

human studies, while generating more human-based rele-

vant information when compared to mouse and rat models

(Tyburski et al. 2008; Johnson et al. 2011; Laiakis et al.

2014b). While previous studies have reported radiation

metabolic signatures in NHP urine at various time points

(Johnson et al. 2012; Pannkuk et al. 2015), information on

perturbations from IR in NHP serum is lacking, as only one

targeted study exists (Jones et al. 2014). These studies are

needed to establish biodosimetry methodology in the event

of large-scale radiological exposures (DiCarlo et al.

2010;2012).

The current study applies a biphasic liquid–liquid

extraction to NHP serum to obtain global metabolomic and

lipidomic radiation signatures 7 days after IR exposure

using an ultra performance liquid chromatography (UPLC)

quadrupole time-of-flight (QTOF) MS platform. Interest-

ingly, we found specific polyunsaturated TGs, cholesteryl

esters (ChoEs), and GPs exhibited a drastic increase in

NHPs exposed to 10 Gy IR. This study provides new

evidence to be used for biomarker verification and vali-

dation in high-throughput biodosimetry following large-

scale radiation exposures.

2 Materials and methods

2.1 Chemicals

All reagents were LC–MS grade (Fisher Scientific, Han-

over Park, IL). Standards for lipidomics included phos-

phatidylethanolamine (PE 14:0/14:0), phosphatidylcholine

(PC 14:0/14:0), lysophosphatidylcholine (LysoPC 17:1),

cholesterol, cholesteryl ester (ChoE 19:0) (Avanti Polar

Lipids, Inc., Alabaster, AL), TG (19:1/19:1/19:1), diacyl-

glyceride (DG 20:1/20:1), monoacylglyceride (MG 17:1),

and free fatty acid (FFA 17:1) (Nu-check Prep Inc.,
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Elysian, MN). Metabolomic standards included debriso-

quine sulfate, 4-nitrobenzoic acid, valine, hypoxanthine,

carnitine, proline, tyrosine, glucose, uridine, and taurine

(all Sigma-Aldrich, St. Louis, MO). All standards were of

the highest purity available.

2.2 NHP system and experimental treatments

Study animals consisted of the cohort previously described

(Pannkuk et al. 2015). Briefly, Rhesus monkeys (Macaca

mulatta) [72 animals used for this study, *4.75 yrs old

(3.6–5.9 years old), *4.65 kg] of Chinese origin, were

acclimated to environmental conditions for at least 6 weeks

prior to study initiation. Purified water was provided ad li-

bitum to all animals and food consumption evaluated at

least twice daily. Animals received a certified chow twice

daily representing approximately 420 grams of food daily

(Teklad Certified Hi-Fiber Primate Diet no. 7195C; Harlan

Laboratories, Madison, WI). Room environment was con-

tinuously controlled (21� ± 3 Celsius; 30-70 % humidity)

with twelve (12) air changes per hour using an HEPA

system. Animals were monitored continuously (i.e.,

24 h/day) by veterinarians for any clinical signs of distress

or pain and the experimental protocol included strict

euthanasia criteria reviewed and approved by the Institu-

tional Animal Care and Use Committee. No animal pre-

sented clinical signs that warranted euthanasia per these

pre-established criteria. Animals received a single total

body irradiation (TBI) exposure at a dose rate

of * 0.6 Gy/min with a 60Co c source. Animals received

proper medication for emesis (ondansetron, 1 mg/kg once

prior to TBI and once after) and mucosal protector (su-

cralfate, PO, 0.5 g BID). One female also received addi-

tional fruits from Day 1 to 5 post-TBI but all other animals

received a standardized medical management plan

(Table S1). Twelve animals (1/2 male and 1/2 female) per

treatment received 2, 4, 6, 7, or 10 Gy TBI and

buprenorphine (0.01 mg/kg, SC) for analgesia. These doses

were administered to span both hematopoietic and minor

gastrointestinal syndromes. Clinical examinations/clinical

pathology were performed on all animals pre-IR and seven

days post-IR. Animals were humanely euthanized on day

seven followed by immediate tissue collection. Blood

(2 mL each) was collected in serum separating tubes (after

their morning meal) and centrifuged at 4 �C, aliquoted, and

stored at -70 �C until shipment on dry ice to Georgetown

University Medical Center (sample size; n = 12, 10 Gy

n = 11).

2.3 Sample preparation and analysis

Serum samples (25 ll) were extracted with cold chloro-

form:methanol (100 ll, 2:1) containing internal standards,

incubated for 5 min at room temperature, vortexed for

30 s, and centrifuged for 10 min (10,0009g, 4 �C). The

lower organic phase was removed with a glass pipette,

evaporated under N2, and reconstituted in 200 ll iso-

propanol:acetonitrile:H2O (50:25:25) (0.5 lM internal

standards; see Chemicals section). The upper aqueous

phase was evaporated under vacuum and reconstituted in

200 ll acetonitrile:H2O (66:34) containing internal stan-

dards for normalization (2 lM debrisoquine sulfate, 30 lM

4-nitrobenzoic acid). Samples were stored at -80 �C until

further LC–MS analyses.

For global metabolic profiling, samples were injected

(2 ll) and analyzed by UPLC with a Waters Acquity BEH

C18 1.7 lm, 2.1 9 50 mm column coupled to a Xevo� G2

QTOF-MS (Waters, Milford, MA) and analyzed in both

negative and positive electrospray ionization (ESI) MSE

modes as previously described (Goudarzi et al. 2015). For

global lipid profiling, samples were injected (1 ll) and

analyzed by UPLC with a Waters Acquity CSH C18

1.7 lm, 2.1 x 100 mm column coupled to a Synapt� G2-Si

HDMS QTOF-MS (Waters, Milford, MA) and analyzed in

the modes above with chromatographic conditions as pre-

viously described (Li et al. 2014; supplemental informa-

tion). Select lipids were analyzed by quadrupole mass

filtered tandem MS. Leucine enkephalin (556.2771

[M?H]? or 554.2615 [M–H]-) was used to calibrate

accurate mass on both instruments.

2.4 Data processing, statistical analysis, and marker

validation

2.4.1 Lipidomics

The total ion chromatogram (TIC) (Fig. S1) was decon-

voluted and peak aligned using Progenesis QI (Nonlinear

Dynamics, Newcastle, UK). Centroid raw data files were

aligned to a pooled quality control (QC; 5 ll of each

sample). The most suitable candidate QC file was chosen

by highest similarity by Progenesis QI. Vector alignment

quality was manually processed and files were aligned with

sensitivity (10 ppm), retention time limits, and peak nor-

malization (normalize to all compounds) at the default

values. Putative identification was obtained by comparing

ions to the LIPID MAPS database and MetaScope theo-

retical fragment search (Fahy et al. 2007;2009). The non-

filtered dataset was normalized to an internal standard

(response analyte/[response internal standard*concentra-

tion]) and analyzed with a Kruskal–Wallis test and a post

hoc Duncan test (SAS 9.4, Cary, NC). A two-way ANOVA

was performed to test for significant effects between radi-

ation dose, sex, and weight loss ([0.5 kg loss). For FFAs

and ChoEs the normalized values from Progenesis QI were

used for statistical analysis. The machine-learning
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algorithm Random Forests (RF) was applied through the

programming language R producing a multi-dimensional

scaling plot (MDS) and heatmap of the top 50 metabolites,

as ranked through RF. A standard singular value decom-

position based principal component analysis (PCA) was

performed. A heatmap and volcano plot (utilizing false

discovery rate [FDR] corrected P values by a classical

Benjamini–Hochberg step-up correction procedure) were

generated with the software MetaboLyzer on complete-

presence ions, which are defined as ions that are present in

at least 70 % of the samples in both analysis groups (Mak

et al. 2014).

2.4.2 Metabolomics

The metabolomic dataset was deconvoluted in a procedure

identical to the lipidomic data and analyzed with univariate

and multivariate statistical methods via MetaboLyzer (Mak

et al. 2014). Complete-presence ions (C 70 %) were ana-

lyzed with a Welch’s t test (P\ 0.05) (also presented with

FDR P values with Q set to 10 %), while partial-presence

ions (\70 %) were treated as categorical data and analyzed

with a Barnard’s test (P\ 0.05). Putative identities were

assigned to ions that were found to be statistically signifi-

cant via neutral mass elucidation and monoisotopic mass

matching to within 20 ppm utilizing the Human Metabo-

lome Database (HMDB), the Kyoto Encyclopedia of Genes

and Genomes, BioCyc, and ChEBI (Kanehisa and Goto

2000; Degtyarenko et al. 2008; Wishart et al. 2009; Caspi

et al. 2014; Croft et al. 2014; Mak et al. 2014). Putative

identities were then mapped to KEGG, BioCyc, and

Reactome pathways. Multivariate analysis via singular

value decomposition based PCA was also conducted on the

statistically significant ions. A subset of significant ions

was validated to pure standards by tandem MS.

3 Results

3.1 Lipidomics

In order to determine the effect of radiation on the lipi-

dome, we analyzed the organic fraction of NHP serum

using LC–MS acquired in in data-independent mode and

select lipids by mass filtered tandem MS. Multivariate data

analysis of NHP serum lipids exposed to ionizing radiation

showed that all exposed groups separated from the control

group (Fig. S2,S3). IR exposed groups separated from the

control with greatest separation observed in the 10 Gy

group (Fig. S2A, B). Separation in the first dimension is

based on differences between the in control and IR exposed

groups, while dose dependent separation is seen on the

second dimension. The volcano plot identified 604 putative

lipid ions (Fig. S2C). Lipid molecules contributing to the

highest variation on the MDS plot generated by RF anal-

ysis were identified as PCs (32:2, 32:3, 36:5, 42:6), ePC

(32:2), DG (36:4), and TG (58:7) (Fig. S2B).

To identify lipid structures we searched observed

adduct, retention time, and when possible fragmentation

patterns from the MSE method (Fig. 1, S4,S5). As lipids

can consist of multiple isomeric species, their respective

carbon and double bond number represents them in this

manuscript. Select lipids were further analyzed by mass

filtered tandem MS to reduce fragmentation from multiple

isomeric species. The response of a variety of broad lipid

classes is illustrated in Figure S6. Lipids that showed sig-

nificant effects between radiation dose, sex, and weight

loss are listed in supplementary Tables 2–5.

We observed major alterations in the levels of DGs and

TGs after radiation exposure (Tables S2, S3; Figs. 2, S7,

S8). NHP serum contained high levels of 34 and 36 C DG

species, of which DG (36:3) was present in the highest

abundance (Fig. S6). The levels of DG species generally

decreased when exposed to IR (Table S3; Fig. S8). NHP

serum contained high levels of TG species ranging from 50

to 62 C (Table S2; Fig. S6), and the highest abundant TG

species consisted of 52 and 54 C. The levels of TGs were

higher in control samples, except for select long-chain TGs

[TGs (60:10, 60:11, 62:14)], whose levels were in much

higher concentrations in animals exposed to 10 Gy IR

(Fig. 2).

The levels of selected species of ChoE (18:1, 20:4, 22:6)

were significantly higher at 10 Gy (Table 1). There were

significant changes in the levels of FFAs (18:3, 22:6, and

20:4) due to IR exposure (Table 1). FFAs (18:3 and 20:4)

were significantly lower in animals exposed to 6, 7, and

10 Gy. Control samples had significantly lower levels of

FFA (22:6) than the 10 Gy group.

The levels of lysoGPs [LysoPC and lysophos-

phatidylethanolamine (LysoPE)] were significantly differ-

ent among groups (Fig. 2, S9,S10, Table S3), as most were

highest in animals exposed to 10 Gy IR. PEs and ePEs

were significantly different among groups (Fig. S9, S11,

Table S4). PCs and ePCs generally decreased in a dose

dependent trend to IR exposure; however, *33 % were

highest in 10 Gy exposure and the remaining highest in

control or 2 Gy exposures groups (Fig. 2, S12, S13;

Table S5).

To further elucidate the chemical structure of TG and

GP species that were increased at 10 Gy in response to IR

exposure, we analyzed their fragmentation patterns using

quadrupole mass filtered tandem MS spectra. We identified

PC (38:2; 18:0/20:2), PC (38:3; 18:0/20:3), PC (38:6; 16:0/

22:6), PC (38:4; 18:0/20:4), TG (60:10; 18:0/20:4/22:6),

TG (60:11; 18:1/20:4/22:6), and TG (62:14; 18:2/22:6/22:6

and 20:4/20:4/22:6) (Fig. 2).
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3.2 Metabolomics

Similar to the lipidomic analysis, a PCA scores plot and

heatmap of the statistically significant ions exhibits separation

between control and exposed groups (Fig. S14). When the

KEGG, BioCyc, and Reactome databases were searched by

putative significant ions, perturbations were observed in the

valine biosynthesis/degradation (2, 4, 7, 10 Gy; KEGG#

ko00290), tyrosine biosynthesis/degradation (4 Gy; BioCyc#

PWY-6134, TYRFUMCAT-PWY), citrulline biosynthesis

(7 Gy; BioCyc# PWY-5004, CITRULBIO-PWY), protein

digestion/absorption (4, 7, 10 Gy; KEGG# ko04974), bio-

logical oxidations (4, 10 Gy; Reactome# 211859), tryptophan

metabolism (6, 7, 10 Gy; BioCyc# TPHAN-DEGRADA-

TION-1) (possibly host microbiota derived, [Kurland et al.

2015; Ó Broin et al. 2015]), and proline degradation (7,

10 Gy; KEGG# ko00330). Univariate analysis detected

putative ions involved in these pathways, of which taurine

[M-H]-, uridine [M?H]?, glucose [M?H]?, tyrosine

[M?H]?, proline [M?H]?, hypoxanthine [M?H]?, car-

nitine [M?H]?, and valine [M?H]? were validated to be

altered in IR exposed groups compared to the control. Valine

[P = 0.012 (FDR P = 0.116), 0.6-fold], proline [P = 0.021

(FDR P = 0.160), 0.5-fold), and tyrosine [P = 0.006 (FDR

P = 0.083), 0.7-fold] were in lower concentration at 2 Gy;

however, tyrosine was not significantly different from the

control at 6 and 10 Gy (Table 2; Fig. 3). Three common

previously identified metabolites (taurine, carnitine, and

hypoxanthine) identified in radiation metabolic profiling were

detected. The levels of hypoxanthine slightly increased at

2 Gy, but were lower than controls at 4 Gy [P = 0.026 (FDR

P = 0.162), 0.7-fold], 6 Gy [P = 0.001 (FDR P = 0.079),

0.5-fold], 7 Gy [P = 0.003 (FDR P = 0.087), 0.6-fold], and

10 Gy [P = 0.052 (FDR P = 0.470), 0.7-fold]. The levels of

uridine were significantly higher at 2 Gy from the control

group [P =\0.001 (FDR P = 0.007), 2.0-fold]. The levels

of glucose were lower at 6 Gy [P = 0.060 (FDRP = 0.504),

0.9-fold] and 10 Gy [P = 0.005 (FDR P = 0.165), 0.8-fold]

than the control group. In serum, the levels of carnitine

showed increases following IR exposures [10 Gy,

P =\0.001 (FDR P\ 0.001), 2.1-fold]. Taurine decreased

at 2 [P = 0.012 (FDR P = 0.016), 0.7-fold], 4 [P = 0.001

(FDR P = 0.012), 0.6-fold], 6 [P =\0.001 (FDR

P = 0.019), 0.5-fold], and 7 [P = 0.003 (FDR P = 0.054),

0.6-fold] Gy; however, it increased at 10 Gy and was non-

significant from the control [P = 0.53 (FDR P = 0.843)].

Differences in these water-soluble metabolites suggest dis-

ruption to protein digestion/absorption (primarily valine,

tyrosine, and tryptophan biosynthesis/degradation), biologi-

cal oxidations, and fatty acid b-oxidation.

4 Discussion

In this study we report a specific lipidomic and metabo-

lomic serum signature from NHPs exposed to different

doses of IR. We found that exposure to IR led to wide

perturbations in lipid metabolism. Interestingly, the levels

Fig. 1 Low and high energy

spectra for coeluting TG (52:4)

and TG (54:5) species,

displaying neutral losses (NL)

and fragments indicative of fatty

acyl chains 16:0, 18:0, 18:1,

18:2, and 18:3 acyl chains.

Structure represents a potential

TG (52:4) isomer
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of three polyunsaturated TGs (TG 60:10, 60:11, 62:14)

significantly increased at 10 Gy. These TGs contained

primarily 20:4 (arachidonic acid) and 22:6 (docosahex-

aenoic acid) acyl moieties. As 20:4 and 22:6 FFAs are

involved in inflammation through the COX and LOX

pathways, it is possible these TGs are synthesized at an

increased rate and serve as a reservoir in the 10 Gy group

for possible transport to tissues (Fig. S15). It has previously

been hypothesized that increased TG concentration could

be attributed to lowered TG uptake due to decreased

adipose LPL activity, destruction of cell membranes, or

increased release from tissues (Mansour 2006). However,

some of these changes may be related to changes in food

intake following IR exposure or drug regimens provided.

Significant decreases in body weight were reported for

animals in the 7 and 10 Gy cohort (Pannkuk et al. 2015).

Past reports have found decreases of TGs and GPs up to

6 days post-IR, but levels began to increase at day 12;

however, when compared to a diet control group, TG

concentration was higher (Feurgard et al. 1998). While the
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Fig. 2 Change in lipid concentration after exposure to IR. Fatty acyl

moieties for select TGs and PCs were determined by mass filtered

tandem MS. A general decrease in short-chain TG, PC, and ePC is

observed with high increases in their long-chain structures at 10 Gy

exposure. Lysophospholipids increased after radiation exposure.

Asterisk indicates significantly different from control as determined

by a Kruskal–Wallis test (P\ 0.05); (n = 12; 10 Gy n = 11)
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observed lipid alterations in the current study could be diet

related, the observation of mixed dose dependent responses

and drastic increases in select lipids in the 10 Gy group

suggests that IR is responsible for altered concentrations.

The majority of significant GPs affected by IR included

PEs, PCs, and their monoacyl (e.g., LysoPC) and ether-

linked forms. Similar to TGs, GPs and eGPs generally

decreased in concentration (some in a dose dependent

manner); however, specific longer-chain polyunsaturated

molecular species increased in the 10 Gy treatment. Most

LysoGPs increased after exposure to IR. LysoPCs may be

inflammation markers due to enzymatic release by phos-

pholipases (e.g., PLA2) that free PUFAs that can be oxi-

dized into eicosanoids. Further investigation by tandem MS

showed the more unsaturated molecules increasing due to

IR exposure were composed of 20:4 and 22:6 acyl moi-

eties. These polyunsaturated acyls were esterified to ChoEs

as well as TGs and GPs. Unlike free cholesterol that is a

predominant membrane component, ChoEs may function

similarly to TGs as they are used for transport in plasma or

as inert storage molecules.

While 20:4 and 22:6 acyls are found in esterified form

(PC, TG, and ChoE) in higher concentrations at 10 Gy, the

active FFA forms increased at 10 Gy but not as high a fold

change as esterified forms. FFA (20:4) (arachidonic acid) is

an essential PUFA derived from FFA (18:2) (linoleic acid),

usually esterified for storage, and cleaved from membrane

phospholipids by phospholipase A2 (Fig. S13) (Calder

2006). Upon cleavage, FFA (20:4) is the parent molecule

from which many prostaglandins, leukotrienes, and other

inflammatory molecules are produced (Serhan and Savill

2005). FFA (22:6) (docosahexaenoic acid) is derived from

FFA (22:5) (eicosapentaenoic acid) and inhibits angio-

genesis, inflammation, apoptosis, and tumor growth (Zhang

et al. 2013). FFA (22:6) forms resolvins and neuropro-

tectins through the LOX pathway. Increases in esterified

20:4 and 22:6 likely indicate upregulation of these com-

pounds for transport to tissues or as signaling molecules in

lethal/sublethal doses of IR exposure. Decreases of their

active FFA form may be due to increased conversion in

inflamed tissues. Given the importance of these molecules

in signaling inflammation and inhibiting apoptosis, their

roles after IR exposure warrants further investigation as

PUFA mediated inflammation as been observed in murine

models (Laiakis et al. 2014a).

Changes in water-soluble metabolites suggested pertur-

bations to amino acid/protein metabolism, fatty acid b-

oxidation, purine catabolism, and biological oxidations.

Table 1 ChoE (ESI?) and FFA (ESI-) molecules that significantly changed (trend with increasing dose) after exposure to IR exposure

(Kruskal–Wallis test, P\ 0.05)

m/z_rt Compound P value H value MFC LM (dose) HM (dose) HMDB ID Trend

673.5886_8.03 ChoE (18:1) 0.0384 11.751 5.4 7 10 HMDB 00918 :

695.5731_7.74 ChoE (20:4) 0.0311 12.280 3.2 7 10 NAa :

714.6178_7.64 ChoE (22:6) 0.0110 14.858 4.2 7 10 NAa :

277.2158_1.92 FFA (18:3) a-Linoleic acid 0.0059 16.370 4.6 10 4 HMDB 00673 ;

303.2316_2.29 FFA (20:4) Arachidonic acid \0.0001 26.719 1.7 7 Con HMDB 01043 ;

327.2315_2.14 FFA (22:6) Docosahexaenoic acid 0.0003 23.400 1.3 Con 10 HMDB 02183 :

m/z mass-to-charge ratio, rt retention time, MFC max fold change, HM dose group with highest mean, LM dose group with lowest mean
a HMDB bioidentifier not available, ChoE (20:4)—LMST01020014 and ChoE (22:6)—LMST01020019)

Table 2 Validated biomarkers from global metabolomic profiling of exposure to c radiation in NHP serum

m/z_rt Compound Calculated m/z Mass error ppm Formula ESI mode HMDB ID Trend

124.0065_0.35 Taurine 124.0068 2.41 C2H7NO3S Negative HMDB 00251 ;

267.0581_0.37 Uridinea 267.0593 4.49 C9H12N2O6 Positive HMDB 00296 :

203.0529_0.35 Glucosea 203.0532 1.48 C6H12O6 Positive HMDB 00122 ;

182.0798_0.38 Tyrosine 182.0817 10.43 C9H11NO3 Positive HMDB 00158 ;

116.0707_0.36 Proline 116.0712 4.31 C5H9NO2 Positive HMDB 00162 ;

137.0463_0.38 Hypoxanthine 137.0463 0.00 C5H4N4O Positive HMDB 00157 ;

162.1123_0.33 L-Carnitine 162.1130 4.32 C7H15NO3 Positive HMDB 00062 :

118.0865_0.35 Valine 118.0868 2.54 C5H11NO2 Positive HMDB 00883 ;

Trend indicates change in concentration with increasing dose
a Detected as Na? adduct
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The concentration of three amino acids (proline, valine,

and tyrosine) decreased in animals exposed to IR. Pertur-

bations of amino acids due to IR have been documented by

gas chromatography (GC) mass selective detection (MSD)

analysis of irradiated rat urine (Lanz et al. 2009), rat serum

analyzed by GC/TOF–MS (Liu et al. 2013), and in mouse

serum by UPLC–MS targeted metabolomics (Laiakis et al.

2014a) and 1H NMR (Khan et al. 2011). While many

amino acids increased in mouse/rat serum 24 h after 8 Gy

IR exposure, proline, valine, and tyrosine slightly

decreased, although not significantly (Laiakis et al. 2014b).

Low valine and tyrosine levels may indicate kidney dam-

age (Schrier 2006), which is a well-known symptom of

radiation exposure (Dawson et al. 2010). Furthermore,

biomarkers of renal failure (i.e., kynurenic acid and

xanthurenic acid) were elevated in NHP urine from the

same study animals (Pannkuk et al. 2015).

Three well established biomarkers of radiation exposure

(L-carnitine, taurine, and hypoxanthine) were detected in

the present study. Free L-carnitine and acylcarnitines

exhibit high fold changes indicating radiation exposure

(Laiakis et al. 2012; Goudarzi et al. 2014; Laiakis et al.

2014b; Pannkuk et al. 2015). We found a dose dependent

increase in L-carnitine, as in other studies, suggesting

perturbation of fatty acid b-oxidation. The majority of L-

carnitine is likely being eliminated from the body, as a

66.2-fold increase was found in urine between control and

10 Gy, but only a 2.1-fold increase is observed in serum

(Pannkuk et al. 2015). Increased L-carnitine could also be a

clinical sign of muscle wasting or decreased nutrition
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Fig. 3 Dose response of serum biomarkers from NHPs exposed to 2,

4, 6, 7, or 10 Gy c radiation. Asterisk indicates significantly different

from control as determined by a Welch’s t test; Mean ± SEM,

considered significant at P\ 0.05, (n = 12; 10 Gy n = 11). A

significant dose dependent increase is observed for L-carnitine.

Valine, proline, tyrosine, glucose, hypoxanthine all decreased.

Taurine decreased at 2, 4, 6, and 7 Gy, however the 10 Gy group

levels were the same as in the control. Uridine significantly increased

at 2 Gy, but not at 4, 6, 7, and 10 Gy
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(Ringseis et al. 2013). The detection of hypoxanthine and

uridine indicate perturbations to purine/pyrimidine cata-

bolism. Hypoxanthine slightly increased at 2 Gy but

decreased at higher IR exposures, which has been observed

in the urine of male human patients (Laiakis et al. 2014b).

In NHP urine, hypoxanthine increased suggesting elimi-

nation at day 7 (Pannkuk et al. 2015). Uridine is a glyco-

sylated form of uracil and is a nitrogenous base found in

RNA. At shorter time points after exposure to IR (e.g.,

24 h) the deaminated form of uridine (20-deoxyuridine) is

found in higher concentrations compared to controls in

urine. The decrease in hypoxanthine, slight increase in

uridine, and the absence of 20-deoxyuridine may indicate

direct products from IR exposure are being eliminated and

cellular activity is occurring at day 7. Further studies

should utilize targeted methods to quantitatively determine

levels of these common analytes found to be altered after

IR exposure.

In addition to IR serving as a model agent to assess

overall metabolomic responses to systemic injury in vivo,

there is an increased need for a rapid biodosimetry

‘‘toolkit’’ in the event of a radiological incident and mass

exposures to IR. NHPs provide excellent model organisms

to elucidate potential radiation biomarkers in humans. As

metabolic profiles of NHP biofluids are currently restricted

to urine (Johnson et al. 2012; Pannkuk et al. 2015) or

specific targeted approaches in serum (Jones et al. 2014),

we have extended radiation biofluid biodosimetry by pro-

viding a global lipidomic and metabolomic analysis of

NHP serum 7 days post-IR; these injury biomarkers occur

at a time sufficiently later after IR exposure so as to allow

triaging at local health facilities. The magnitude of lipid

perturbation in serum are generally more striking than

metabolic changes in urine, making serum more amenable

to assess select radiation biomarkers. In particular, we

found that lipids rich in polyunsaturated acyls (20:4

[arachidonic acid] and 22:6 [docosahexaenoic acid]) were

increased in NHPs exposed to 10 Gy IR. About half

(LD-50/30) of NHP and humans show lethality without

supportive care within a month after 4–5 Gy of whole body

irradiation, while the number increases to over 7 Gy with

supportive care and up 10 Gy or more with intensive

therapy including bone marrow transplant (Hall and

Giaccia, 2012; MacVittie et al. 2012a). A 10 Gy TBI dose

in NHPs after 7 days will result in a loss of *72 % jeju-

num crypt cells when receiving supportive care (MacVittie

et al. 2012b). Therefore, as a 10 Gy TBI dose in NHPs will

bring radiation-induced lethal bone marrow damage

(without transplant) and an appreciable level of gastroin-

testinal injury, these individuals would need immediate

medical care. This may be reflected in the marked changes

in some metabolites at this dose. As arachidonic acid and

docosahexaenoic acid are important molecules directly

involved in pro-inflammatory responses through the COX

and LOX pathways, the role of these molecules should be

further elucidated in NHPs exposed to high levels of IR

(e.g., 10 Gy). Future studies should address other time

points other than 7 days and differences in NHPs not

receiving supportive care. Further use of NHP models in

these lipidomic and metabolomic studies will aid in

development of biodosimetry methods and assigning

proper medical care in the possible event of a mass radi-

ation exposure.
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